
HyperSfM

Kai Ni∗ and Frank Dellaert†
∗Microsoft Corporation, Redmond, WA 98052, USA

†Georgia Institute of Technology, Atlanta, GA 30332, USA

Figure 1. We introduce HyperSfM, a divide-and-conquer approach for Structure from Motion. We represent an SfM problem by a
hypergraph which we recursively partition, obtaining a tree of fully-constrained, nonlinear sub-problems. The top three levels are shown
above for the " Grand Canal" data-set [1]. After partitioning, computation proceeds from the bottom up, recursively merging submaps.

Abstract

We propose a novel algorithm that solves the Structure
from Motion problem in a divide and conquer manner by
exploiting its bipartite graph structure. Recursive parti-
tioning has a rich history, stemming from sparse linear
algebra and finite element methods, and are also appealing
for solving large-scale SfM problems. However, an impor-
tant and less explored question is how to generate good
partitionings for SfM that divide the problem into fully-
constrained sub-problems. Here we introduce HyperSfM,
a principled way to recursively divide an SfM problem
using a hypergraph representation, in which finding edge
separators yields the desired “nested-dissection” style tree
of nonlinear sub-problems. After partitioning, a bottom-
up computation pass solves the SfM problem robustly
(by having fully constrained sub-problems) and efficiently
(because most nonlinear error is removed at lower levels
of the tree). The performance of the algorithm is demon-
strated for various indoor and outdoor standard data-sets.

I.. Introduction

Large-scale structure from motion (SfM) problems have
gained more and more attention lately, as SfM is becoming
one of the key technologies in applications such as city-
scale 3D reconstruction. A lot of effort has been made to
push SfM algorithms towards collections of a large number
of photos [2], [3]. In this paper we concentrate on the
back-end optimization phase, after feature extraction and
data association has been performed, which are daunting
problems in their own right [1], [4].

In photogrammetry, divide and conquer approaches are
a common and popular way to “bundle” data from a large
area [5]. When images are taken sequentially from a plane
or a ground vehicle, a feasible way to tackle the problem is
to solve the subproblem within a relative coordinate system
rather than a consistent global coordinate system [6].
However, this approach is decidedly suboptimal when there
are a lot of “loop closures” in the camera trajectory, which
is typically the case in unstructured photo-collections.
Moreover, for such unordered, wide-baseline data-sets we

typically do not have knowledge of the capture ordering,
making this approach unsuitable.

Another important problem worth investigating is how
to avoid degeneracies when generating submaps. General
partitioning algorithms [7] do not take into account the
domain knowledge of SfM problems. Hence, directly ap-
plying those algorithms will easily introduce degeneracies
to the state variables, especially 3D points, as each 3D
point is typically only visible in a small number of cameras
(two or three in practice). In fact, little work has been done
on how to optimally divide the SfM problem while keeping
all the individual sub-problems fully constrained.

In this paper, we propose a principled way to partition
the SfM problem. We exploit the bipartite structure of the
SfM visibility graph and convert it to a simplified camera
hypergraph. It is shown that vertex separators composed
of only 3D points can be located from the hypergraph,
and non-singularity can be strictly enforced by imposing
a graph refinement step after partitioning.

Our algorithm is not only out-of-core but also naturally
alleviates the initialization issue of bundle adjustment in
SfM problems [8], [9]. We employ a bottom-up optimiza-
tion using the submap tree obtained by recursive partition-
ing. The optimization over different subtrees in the same
level can be carried out in parallel. The optimized submaps
are aligned to one another after passing information up the
tree to their common ancestor. As a beneficial consequence
we never need to generate the initialization for the entire
large-scale problem.

In the results section, we demonstrate the effectiveness
of our algorithm using several indoor and outdoor data sets
from Microsoft’s PhotoSynth database. We show that the
proposed partitioning scheme effectively decouples origi-
nal problems, and that the resulting sub-problem structure
greatly speeds up the bottom-up bundle adjustment phase.

II.. Background and Related Work
A.. Related Work

Divide-and-conquer methods to efficiently solve large-
scale bundle-adjustment problems have long been favored
in the photogrammetry community [5], [8]. In structure
from motion problems, which are typically much more
unstructured, dividing the entire problem into small pieces
not only makes the bundle adjustment optimization more
scalable, but also provides an easier way to generate good
initializations, as has already been demonstrated to be
a crucial capability for SfM problems [9]. Our work is
related to [10], [11] in terms of hierarchical optimization,
but ours does divide-and-conquer at the variable level,
while most other work operates at the image level.

The divide-and-conquer idea for continuous optimiza-
tion was first explored in the linear algebra community

under the name “nested dissection” [12]. Lipton, Rose,
and Tarjan subsequently showed that, for certain classes
of graphs (e.g., planar), separator theorems exist that
enable one to obtain theoretical guarantees on the worst
case computational complexity [13]. In detail, the nested
dissection (ND) algorithm recursively partitions the graph
of the original problem and finds a vertex separator VS

which splits the graph into two parts A and B, such that
there are no connections between any node in A and any
node in B. More recently, Krauthausen et al. [14] applied
the separator theorems of the nested dissection algorithm
to large-scale urban mapping problems in robotics.

We have previously investigated a graph-based approach
for SfM [15], introducing an out-of-core SfM algorithm
which uses submaps to leverage a computational advan-
tage. However, in that approach we only used a single-
level submap structure, and the main bottleneck is solving
the dense linear system corresponding to a large separator.
Moreover, we did not explicitly handle degeneracies in
the submaps. In this paper, we introduce a recursive
partitioning approach to produce submaps of very small
size, and also address the degeneracy problem by working
on a hypergraph representation. Note that we have explored
a hierarchical optimization scheme in robotics[16], but it
only applies only to solving 2D reconstruction problems:
due to the same degeneracy issue discussed above, is not
suitable for solving SfM problems.

B.. Problem Formulation

In SfM [17], we infer the structure of the scene and
the motion of the camera by using the correspondences
between features from different views. In particular, certain
types of features [18] (points, lines, and so forth) are first
extracted and matched across all the image pairs. Then the
camera parameters and feature locations are optimized to
minimize a cost function, such as the 2D projection errors.

The non-linear minimization of the projection errors
is referred to as bundle adjustment in the literature [8],
in which we jointly estimate the optimal 3D structure,
as well as the camera parameters by minimizing a least-
squares cost function. Typically, the measurement function
hk(.) is non-linear, and one assumes a normally distributed
measurement noise with associated covariance matrix Σk,
leading to

K∑
k=1

‖hk(Cik , Pjk)− zk‖2Σk
(1)

Above, Ci(i ∈ 1...M) represents the intrinsic and extrinsic
camera calibrations, Pj(j ∈ 1...N) represents the 3D
structure, and zk(k ∈ 1 . . .K) represents the 2D mea-
surement of the point Pjk in camera Cik . The notation
‖.‖2Σ stands for the squared Mahalanobis distance with
covariance matrix Σ.

C2 C3 C4C1

P1 P2 P3 P5 P6 P7 P8 P9 P10

P11

C2
C3

C4C1

P̂3

P̂1
P̂2

(1) (2)

P4

Figure 2. The visibility graph of an exemplar SfM problem on the left is converted to the corresponding hypergraph representation
on the right. The cameras are shown in blue, and the 3D points are shown in yellow. Each edge in the left graph indicate that a
3D point is visible from a certain camera. The contours in the right graph represent the hyperedges in the hypergraph, and each
contour connects multiple cameras. Note that the colors of 3D points in the visibility graph share the same colors as the corresponding
hyperedges in the hypergraph. For simplicity, we ignore any singularity problem in the toy example.

C.. The Bipartite Visibility Graph

With every SfM we can associate a visibility graph,
i.e., the bipartite graph GSfM = (C,P,E) where the
sets of cameras C and points P appear as vertices, and
there is an edge eij corresponding to every measurement
zk, indicating that point Pj is visible in camera Ci. A
small example is shown in Figure 2.(1). Note that dividing
the original SfM problem is equivalent to partitioning
the corresponding visibility graph. Generally speaking, we
desire that the sub-problems have similar sizes, and each
sub-problem is also self-contained, i.e. non-singular.

III.. HyperSfM
Here we introduce our main contribution, HyperSfM,

which consists of three major parts:
1) A hierarchical partitioning based on hypergraphs.
2) A refinement step that deals with degeneracies.
3) A bottom up optimization step that merges submaps.

A.. Hierarchical Partitioning

Our algorithm works by finding a small edge separator
in the camera hypergraph, which corresponds to a vertex
separator in the original visibility graph consisting solely
of 3D points. A hypergraph H = (X , E) is composed
of a set of vertices X and a set of hyperedges E , where
each hyperedge connects multiple vertices. We define the
camera hypergraph Hcam = (C,P) of an SfM problem
as the hypergraph obtained by treating the cameras C as
vertices X and the 3D points P as hyperedges E .

To reduce the complexity of hypergraphHcam and speed
up later graph operations, we introduce compressed edges.
In SfM problems, it is typical that two or more images

Separator

Separator

Submap Submap

Separator

Submap Submap

Separator

Submap Submap

Figure 3. By partitioning the hypergraphs and finding vertex
separators in the visibility graph, the original SfM problem
can be partitioned recursively. The resulting tree structure has
submaps on its leaves and has separators along the path from
the leaves to the root. Note that two subtrees are independent
given their common ancestor on the tree.

perceive the same cloud of 3D points, e.g. points on a
building facade. Those 3D points correspond to the edges
in Hcam that connect to the same camera vertices. Hence,
it is straight-forward to introduce compressed edges and
generate a much simplified graph Ĥcam = (X , Ê). For
example, points P1 to P5 in Figure 2.(1) all connect to C1

and C2, so they will be combined to a compressed edge
P̂1 in Ĥcam, as shown in Figure 2.(2). We also specify the
weights of the resulting hyperedges using the number of
3D points each compressed edge represents, e.g. wP̂1

= 5.

We partition the hypergraph by finding a small edge
separator ÊS (defined below). This hypergraph partitioning
is done recursively, which leads to a tree structure as
shown in Figure 3. Note that the partitioning is general
regardless of graph types (e.g. loopy or not). The recursive

P11

Separator

C2
C3

C4C1

P̂3

P̂1
P̂2

Submap
C2C1

P1 P2 P3 P4 P5

Submap
C3 C4

P6 P7 P8 P9 P10

(1) (2)
Figure 4. Partitioning a hypergraph for a SfM problem (left) using an edge separator is equivalent to finding a vertex separator
composed solely of 3D points in the original visibility graph (right). The edges in the hypergraph are weighted according to the
number of 3D points they correspond to, and P̂3 is chosen as the edge separator here because it has the smallest weights. The two
resulting submaps are independent to each other given their vertex separator and can be optimized in an out-of-core manner.

partitioning stops when the size of the current submap is
smaller than a certain threshold (5000 for all our experi-
ments). Note that the sizes of the separator are typically
very small (details will be described in the result section)
In fact, although there are no theoretical guarantees for
the separator size in SfM problems, we found we can
in practice always find good separators by exploiting the
underlying structure of SfM.

An edge-separator ÊS of a hypergraph Ĥcam is a subset
of its edges Ê that disconnects Ĥcam into two or more
separate connected components ĤA = (CA, P̂A), ĤB =
(CB , P̂B) Because of the definition of camera hyper-
graph Ĥcam, any edge separator ÊS in Ĥcam automatically
corresponds to a subset PS of the 3D points in the original
visibility graph GSfM. For example, in Figure. 4, edge
separator ÊS = P̂3 corresponds to the 3D point set
PS = {P11} from the visibility graph.

Theorem 1. If ÊS is the edge separator of hyper-
graph Ĥcam, and PS is the set of its corresponding 3D
points in the visibility graph GSfM, we have that PS is
the vertex separator of GSfM, disconnecting the visibility
graph GSfM = (C,P,E) in two or more components
(CA, PA, EA), (CB , PB , EB), . . .

Proof. The cameras in CA and CB in GSfM are not
connected, because GSfM is bipartite. But moreover, no
point in PA is visible from any camera in CB . To see this,
assume there is point P1 ∈ PA connected to a camera C1 ∈
CB . Because (CA, PA, EA) is a connected component (by
definition), P1 is also connected to some camera, say C2 in
CA. But then P1 must be in the edge separator ÊS = PS ,
and not in PA, which is a contradiction. QED.

B.. Degeneracy Issues and Graph Refinement
To be able to optimize the partitioned submaps sepa-

rately, we need to make sure that each submap is well
constrained. That is to say, each landmark is visible in

at least n cameras, and each camera perceives at least m
landmarks. For example, in a SfM problem where camera
calibrations are known, we have m = 5 and n = 2.
Combining both requirements, we call such a partitioning
a constrained (m,n)-cut. Note that the cut itself does not
guarantee the non-singularity of a submap. However, we
found that it is typically the case, otherwise more advanced
pruning methods similar to [19] can be utilized.

In the partitioning algorithm we introduced above,
we explicitly choose a vertex separator PS consisting
solely of 3D points. The main reason for doing this is
that it prevents the 3D points in the resulting submaps
(CA, PA, EA), (CB , PB , EB), . . . from becoming singular.
In SfM problems, the 3D points are typically only visible
to a small number of cameras; if one or more of their
cameras end up in the vertex separator after the parti-
tioning, the related 3D points can easily become under-
constrained in their submaps. Hence, to generate a valid
(m,n)-cut, we try to use only 3D point vertices as the
separator for GSfM. In this case, only cameras in the
submaps “lose” constraints if their observable 3D points
are part of the separator. As each camera usually sees a
lot of 3D points, losing some of those constraints because
of vertex separator PS usually does not make the camera
singular. Also note that all the 3D points in the resulting
submaps after partitioning remain fully constrained, as
their connections to the neighboring cameras stay the same.

We employ a partition refinement step to enforce non-
singularity and handle the rare case that some cameras be-
come singular after we split the graph using a certain vertex
separator. In graph theory, graph refinement refers to the
local improvement approaches such as the widely-used KL
refinement by Kernighan and Lin [20] and the algorithm by
Fiduccia and Mattheyses [21]. In this paper, given hyper-
graph partitioning results, we locate the under-constrained

P11

Separator

(1) Wait for the child subtrees/submaps to be optimized (2) Submaps locally optimized but misaligned with each other

(3) Align submaps using base nodes(4) Merge the submaps and smooth the map globally

P11
Separator

C2 C3 C4C1

P1 P2 P3 P5 P6 P7 P8 P9 P10

P11

P4

Submap
C2C1

P1 P2 P3 P4 P5

Submap
C3 C4

P6 P7 P8 P9 P10

Submap
C3

C4

P6
P7

P8
P9

P10

Submap

C
2

C
1

P
1

P
2 P

3 P
4

P
5

Figure 5. The bottom-up optimization is carried out recursively. The red edges indicate the constraints used in each optimization.
Readers may refer to [15] for more details of optimization using base nodes.

cameras in submaps(CA, PA, EA), (CB , PB , EB), . . . and
put them into the separator PS . Up to this point, we also
need to check all the affected 3D points in PA, PB , ... and
put the under-constrained ones to PS as well. We iterate
over cameras and 3D points until all the vertices in the
submaps are fully constrained. For all the data sets we
tested in this paper, it took at most two iterations, which
makes graph refinement efficient.

C.. Bottom-up Optimization

Given the tree structure after recursive partitioning, we
employ a bottom-up process to optimize and merge all the
submaps into a final global reconstruction. The process
is inherently recursive (illustrated in Figure 5): for each
subtree, the separator waits for its children to complete
their own optimization. All the optimized child submaps
are then aligned with each other as rigid maps. At last, all
the child submaps as well as their separators are optimized
together in the unified coordinate system. Such a process is
carried out for each separator, and the entire SfM problem
is solved in a bottom-up fashion.

The bottom-up process can be done efficiently in an
out-of-core manner. Note that the multi-level tree structure
induces more submaps with smaller sizes compared to the
single-level submap based approaches such as [15], and
this enables us to distribute the computation to more cores.

The rigid alignment of submaps is achieved using base

nodes, as shown in step (3) of Figure 5. Each submap is
assigned a base node, which represents the 6DoF trans-
formation between the submap and its separator. Such an
alignment is fast because only several base node variables
as well as a small separator are involved. In fact, the
number of base nodes under the same separator is typically
two or three, and the sizes of the separators are also much
smaller compared to the size of the original problem (the
details will be presented in the results section).

The initialization problem on each level of the tree is
sidestepped by integrating the optimized submaps from
the children. It has been shown that a reasonably good
initialization is crucial for the final convergence of SfM
problems [8], [9]. In large-scale SfM problems, the initial-
ization is more difficult due to errors accumulated in local
reconstructions, e.g. a maximum spanning tree of pair-wise
reconstructions, greatly reduce the overall initialization
quality. By splitting the original data into many smaller
parts, the initialization in the global level is avoided.
Instead, small maps propagate their optimized states to
the parent separator, where that information is integrated
together by submap alignment. In this way, more reliable
initialization is achieved from the bottom up, which makes
the algorithm more robust.

The bottom-up optimization proposed here is also exact.
A smoothing step [22] is executed for all the subtrees
including the entire tree when reaching the root level (step

|PS | / |GSfM| Nr. Submap Time (sec.)
Brown House 2.48% 2 0.57

Old House 1.61% 3 1.28
Grand Canal 0.99% 2 3.12
San Marco 12.5% 3 3.71
St. Peters 4.00% 2 5.10

Table I. The partitioning results for the five data sets. |PS |is
the number of vertices in the root separator PS , and |GSfM| is
the total number of vertices in the original problems. The second
column indicates the number of submaps after the first-level
partitioning. The timing results in the last column is the total
time cost of the entire recursive partitioning.

(4) in Figure 5), which improves the quality of the most
recent subtree estimate and supplies an initialization for the
parent level. More importantly it guarantees the exactness
of the current subtree and is the same as regular bundle
adjustment with all variables involved. For levels other
than the root level, the optimization does not need to fully
converge, as its results only serve as the initialization for
the next level. In our experiments, we limit the number of
iterations for all subtree smoothing to seven except for the
root level, where we use the same convergence criteria as
we would for regular bundle adjustment.

IV.. Experimental Results
A.. Hypergraph Partitioning

We demonstrate the hypergraph partitioning using five
indoor and outdoor data-sets (Brown House, Old House,
Grand Canal, San Marco, St. Peters) from the PhotoSynth
database, as shown in the first column of Figure 6. After
generating the camera hypergraph Ĥcam, we use the Metis
graph partitioner [7] (the default settings are used in our
experiments) to find the edge separators, which are shown
in red in the last two columns of Figure 6. All the resulting
first-level submaps are shown in other colors. To make the
comparisons fair, we initialized both BA and HyperSfM
using the same pairwise reconstruction results from the
PhotoSynth implementation.

First, we evaluate how well our algorithm is able to
divide SfM problems. As listed in Table I, most of the
data sets have a separator smaller than 5% of the total
data size. This means that given a small part of the points
and cameras (mostly points), the entire 3D world can be
decoupled into two or three submaps without discarding
any measurements from the original problem.

We investigated both indoor and outdoor scenarios, and
the characteristics of the data sets vary from one to another.
For the Grand Canal, there is no loop in the camera
trajectory, hence the partitioning is straightforward: the set
is split into two parts along the camera trajectory. In Brown
House, Old House and St. Peter data sets, there are loops in
the trajectory, but the cameras do not have many 3D objects

Cameras BA(sec.) HyperSfM(sec.)
Brown House 61 725 456

Old House 178 1279 789
Grand Canal 270 3237 1553
San Marco 237 N/A 1465
St Peters 285 N/A 1823

Table II. The timing results for the five data sets. BA indicates
our own implementation of regular bundle adjustment, which
uses AMD ordering [23] to solve the linear systems. Note
that HyperSfM uses exactly the same implementation as regular
bundle adjustment to optimize the individual submaps.

Level Submap Alignment Subtree Smoothing
1st 6.0 iter., 0.48sec. 3.0 iter, 186.40 sec.
2nd 6.5 iter., 0.72 sec. 3.5 iter., 28.08sec.
3rd 8.2 iter., 1.28 sec. 4.3 iter., 7.67 sec.
4th 8.9 iter., 1.50 sec. 4.5 iter., 3.45 sec.
5th N/A 6.3 iter., 0.78 sec.

Table III. The timing results for optimizing submaps in Grand
Canal data-set on each level of bottom-up optimization.
Results are averaged over all the operations that happen at the
save level. In the first column, the two numbers are the average
nonlinear iteration numbers and the average time per iteration
for aligning the child submaps with respect to each separator. In
the second column, the numbers are the corresponding iteration
numbers and time per iteration for smoothing each submap. At
the 5th level, submap alignment results are not available because
there are no child submaps at this level.

in common. Hence the separator size is still very small. On
the other hand, in the San Marco data set, the separator size
is bigger as most of pictures were taken along the direction
of St Mark’s basilica and Campanile town, hence there are
far more overlapping between camera views, which leads
to a bigger separator. Note that overall it is still a small
portion of the original data.

The partitioning on the hypergraph is very efficient, as
shown in the last column of Table I. For all five data sets,
the longest execution time is about five seconds. Compared
to the total SfM timing shown in the next section, the
overhead caused by partitioning is less then 1%, hence it
can often be neglected in the whole SfM pipeline.

B.. SfM Timing Results

In this section, we measure and compare the timing
results of the regular bundle adjustment algorithm and the
proposed HyperSfM algorithm. All the experiments were
carried out on a 2.8GHz Intel Core 2 Duo machine with
8GB memory. We used the same feature correspondences
as inputs to both algorithms, and we also made HyperSfM
use the same implementation and settings as regular bundle
adjustment when doing the nonlinear optimization for all
the submaps and the final global reconstruction. Hence,
the differences in the timing results are only due to
HyperSfM’s divide-and-conquer scheme.

In Table II, we can observe that solving the decoupled
problems yields a great improvement in terms of both

Figure 6. The partitioned results for the five data sets (from top to bottom: Brown House, Old House, Grand Canal, San Marco,
and St. Peters). The first column show the cameras and the point clouds in their original color, and the last two columns are the front
view and the top view of the root separator (labelled in red) and the first-level submaps (labelled in the other colors).

speed and robustness. For the Grand Canal data-set and
the St. Peters data set, regular sparse bundle adjustment
does not converge properly because the initialization we
obtained from pairwise reconstructions is very noisy. On
the other hand, the proposed HyperSfM approach behav-
iors more robustly and always converged successfully, ben-
efited from the bottom-up initialization using submaps. For
the easier data sets (Brown House, Old House, and Grand
Canal), HyperSfM shows 37% to 53% speed improvement
over the regular bundle adjustment algorithm.

We also investigated the behavior of bottom-up opti-
mization at each level in the tree structure. As listed in
Table III, we observed that submap alignment is much
faster than the smoothing step even with more iterations on
average. This is because submap alignment only involves
the separator variables and several base-node variables,
which are far fewer than the number of the variables in
the entire subtree. The submap alignment gets a little more
expensive for the low-level submaps, because submaps are
less decoupled from each other at those levels. This is
easily explained, as the partitioning algorithm will always
choose the best vertex separator at each level, and hence
the cost of partitioning, i.e. the number of edges it cuts,
increase with each successive level in the tree.

HyperSfM also saves time by optimizing small lower-
level submaps, thereby obviating the need for many itera-
tions on the global reconstruction. For example, regular
bundle adjustment takes 17 iterations to converge on
the Grand Canal data-set. On the other hand, HyperSfM
only takes 3 iterations on the same level of the global
reconstruction (the first row in Table III), because most
of nonlinear error has been removed during the low-level
submap optimization. Note that HyperSfM runs bundle
adjustment in each level, but the numbers of variables
involved are much smaller in the lower levels. Even though
HyperSfM spends part of time on the bottom-up optimiza-
tion, it certainly affords great time-savings overall. Note
that the three iterations spent in the smoothing step also
guarantee the same exactness as regular bundle adjustment,
which is another desired feature of the proposed algorithm.

V.. Conclusions
We proposed a principled way to recursively partition

SfM problems into small sub-problems based on a hyper-
graph representation, and applied a bottom-up optimization
to exploit the tree structure so-obtained. This has been
shown to have superior efficiency and scalability compared
to traditional approaches. Furthermore, HyperSfM enables
us to solve sub-problems of small size, which is demon-
strated to be much more robust than directly working on
original problems. The future work includes implementing
a distributed system that runs over multiple threads and
fully exploits the potential of the out-of-core optimization.

References
[1] N. Snavely, S. Seitz, and R. Szeliski, “Photo tourism: Exploring

photo collections in 3D,” in SIGGRAPH, 2006, pp. 835–846.
[2] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle

adjustment in the large,” in Eur. Conf. on Computer Vision, 2010.
[3] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I. Kweon, “Pushing

the envelop of modern methods for bundle adjustment,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2010.

[4] J. M. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu,
Y. H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys,
“Building rome on a cloudless day,” in Eur. Conf. on Computer
Vision, 2010.

[5] D. C. Brown, “The bundle adjustment - progress and prospects,”
Int. Archives Photogrammetry, vol. 21, no. 3, 1976.

[6] G. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative
bundle adjustment,” in Robotics: Science and Systems (RSS), 2009.

[7] G. Karypis and V. Kumar, “Multilevel algorithms for multi-
constraint graph partitioning,” in Supercomputing ’98: Proceedings
of the 1998 ACM/IEEE conference on Supercomputing (CDROM).
Washington, DC, USA: IEEE Computer Society, 1998, pp. 1–13.

[8] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment – a modern synthesis,” in Vision Algorithms: Theory and
Practice, ser. LNCS, W. Triggs, A. Zisserman, and R. Szeliski, Eds.
Springer Verlag, Sep 1999, pp. 298–375.

[9] C. Engels, H. Stewenius, and D. Nister, “Bundle adjustment rules,”
in Symposium on Photogrammetric Computer Vision, Sep 2006, pp.
266–271.

[10] M. Farenzena, A. Fusiello, and R. Gherardi, “Structure-and-motion
pipeline on a hierarchical cluster tree,” in Intl. Conf. on 3D Digital
Imaging and Modeling, October 2009.

[11] M. F. R. Gherardi and A. Fusiello, “Improving the efficiency of
hierarchical structure-and-motion,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), June 2010.

[12] A. George, “Nested dissection of a regular finite element mesh,”
SIAM Journal on Numerical Analysis, vol. 10, no. 2, pp. 345–363,
April 1973.

[13] R. Lipton and R. Tarjan, “Generalized nested dissection,” SIAM
Journal on Applied Mathematics, vol. 16, no. 2, pp. 346–358, 1979.

[14] P. Krauthausen, F. Dellaert, and A. Kipp, “Exploiting locality
by nested dissection for square root smoothing and mapping,” in
Robotics: Science and Systems (RSS), 2006.

[15] K. Ni, D. Steedly, and F. Dellaert, “Out-of-core bundle adjustment
for large-scale 3D reconstruction,” in Intl. Conf. on Computer Vision
(ICCV), Rio de Janeiro, October 2007.

[16] K. Ni and F. Dellaert, “Multi-level submap based slam using nested
dissection,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2010.

[17] S. Ullman, The interpretation of visual motion. The MIT press,
Cambridge, MA, 1979.

[18] D. Lowe, “Distinctive image features from scale-invariant key-
points,” Intl. J. of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[19] J. Frahm and M. Pollefeys, “RANSAC for (quasi-)degenerate data
(QDEGSAC),” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2006.

[20] B. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol. 49,
no. 2, pp. 291–307, 1970.

[21] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in DAC ’82: Proceedings of the 19th
Design Automation Conference. IEEE Press, 1982, pp. 175–181.

[22] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” Intl.
J. of Robotics Research, vol. 25, no. 12, pp. 1181–1203, Dec 2006.

[23] P. Amestoy, T. Davis, and I. Duff, “An approximate minimum
degree ordering algorithm,” SIAM Journal on Matrix Analysis and
Applications, vol. 17, no. 4, pp. 886–905, 1996.

